
organize Documentation
Release 1.10.1

Thomas Feldmann

Jan 24, 2022

Contents

1 Contents: 3
1.1 Quickstart . 3
1.2 Configuration . 4
1.3 Filters . 10
1.4 Actions . 22

2 Indices and tables 31

Python Module Index 33

Index 35

i

ii

organize Documentation, Release 1.10.1

organize is a command line utility to automate file organization tasks.

http://github.com/tfeldmann/organize

Contents 1

http://github.com/tfeldmann/organize

organize Documentation, Release 1.10.1

2 Contents

CHAPTER 1

Contents:

1.1 Quickstart

1.1.1 Installation

Requirements: Python 3.6+

organize is installed via pip:

$ pip install organize-tool

If you want all the text extraction capabilities, install with textract like this:

$ sudo pip3 -U organize-tool[textract]

1.1.2 Creating your first config file

To edit the configuration in your $EDITOR, run:

$ organize config

For example your configuration file could look like this:

Listing 1: config.yaml

rules:
move screenshots into "Screenshots" folder
- folders:

- ~/Desktop
filters:

- filename:
startswith: Screen Shot

actions:
- move: ~/Desktop/Screenshots/

(continues on next page)

3

organize Documentation, Release 1.10.1

(continued from previous page)

move incomplete downloads older > 30 days into the trash
- folders:

- ~/Downloads
filters:

- extension:
- crdownload
- part
- download

- lastmodified:
days: 30

actions:
- trash

Note: You can run $ organize config --path to show the full path to the configuration file.

1.1.3 Simulate and run

After you saved the configuration file, run $ organize sim to show a simulation of how your files would be
organized.

If you like what you see, run $ organize run to organize your files.

Note: Congrats! You just automated some tedious cleaning tasks! Continue to Configuration to see the full potential
of organize or skip directly to the Filters and Actions.

1.2 Configuration

1.2.1 Editing the configuration

All configuration takes place in your config.yaml file.

• To edit your configuration in $EDITOR run:

$ organize config # example: "EDITOR=vim organize config"

• To show the full path to your configuration file:

$ organize config --path

• To open the folder containing the configuration file:

$ organize config --open-folder

• To debug your configuration run:

$ organize config --debug

4 Chapter 1. Contents:

organize Documentation, Release 1.10.1

1.2.2 Environment variables

• $EDITOR - The editor used to edit the config file.

• $ORGANIZE_CONFIG - The config file path. Is overridden by --config-file cmd line argument.

1.2.3 Rule syntax

The rule configuration is done in YAML. You need a top-level element rules which contains a list of rules. Each
rule defines folders, filters (optional) and actions.

Listing 2: config.yaml

rules:
- folders:

- ~/Desktop
- /some/folder/

filters:
- lastmodified:

days: 40
mode: newer

- extension: pdf
actions:
- move: ~/Desktop/Target/
- trash

- folders:
- ~/Inbox

filters:
- extension: pdf

actions:
- move: ~/otherinbox

optional settings:
enabled: true
subfolders: true
system_files: false

• folders is a list of folders you want to organize.

• filters is a list of filters to apply to the files - you can filter by file extension, last modified date, regular
expressions and many more. See Filters.

• actions is a list of actions to apply to the filtered files. You can put them into the trash, move them into
another folder and many more. See Actions.

Other optional per rule settings:

• enabled can be used to temporarily disable single rules. Default = true

• subfolders specifies whether subfolders should be included in the search. Default = false. This setting only
applies to folders without glob wildcards.

• system_files specifies whether to include system files (desktop.ini, thumbs.db, .DS_Store) in the search.
Default = false

1.2. Configuration 5

https://learnxinyminutes.com/docs/yaml/

organize Documentation, Release 1.10.1

1.2.4 Folder syntax

Every rule in your configuration file needs to know the folders it applies to. The easiest way is to define the rules like
this:

Listing 3: config.yaml

rules:
- folders:

- /path/one
- /path/two

filters: ...
actions: ...

- folders:
- /path/one
- /another/path

filters: ...
actions: ...

Note:

• You can use environment variables in your folder names. On windows this means you can use %public%/
Desktop, %APPDATA%, %PROGRAMDATA% etc.

Globstrings

You can use globstrings in the folder lists. For example to get all files with filenames ending with _ui and any file
extension you can use:

Listing 4: config.yaml

rules:
- folders:

- '~/Downloads/*_ui.*'
actions:

- echo: '{path}'

You can use globstrings to recurse through subdirectories (alternatively you can use the subfolders: true
setting as shown below)

Listing 5: config.yaml

rules:
- folders:

- '~/Downloads/**/*.*'
actions:

- echo: 'base {basedir}, path {path}, relative: {relative_path}'

alternative syntax
- folders:

- ~/Downloads
subfolders: true
actions:
- echo: 'base {basedir}, path {path}, relative: {relative_path}'

6 Chapter 1. Contents:

organize Documentation, Release 1.10.1

The following example recurses through all subdirectories in your downloads folder and finds files with ending in .c
and .h.

Listing 6: config.yaml

rules:
- folders:

- '~/Downloads/**/*.[c|h]'
actions:

- echo: '{path}'

Note:

• You have to target files with the globstring, not folders. So to scan through all folders starting with log_ you
would write yourpath/log_*/*

Excluding files and folders

Files and folders can be excluded by prepending an exclamation mark. The following example selects all files in
~/Downloads and its subfolders - excluding the folder Software:

Listing 7: config.yaml

rules:
- folders:

- '~/Downloads/**/*'
- '! ~/Downloads/Software'

actions:
- echo: '{path}'

Globstrings can be used to exclude only specific files / folders. This example:

• adds all files in ~/Downloads

• exludes files from that list whose name contains the word system ending in .bak

• adds all files from ~/Documents

• excludes the file ~/Documents/important.txt.

Listing 8: config.yaml

rules:
- folders:

- '~/Downloads/**/*'
- '! ~/Downloads/**/*system*.bak'
- '~/Documents'
- '! ~/Documents/important.txt'

actions:
- echo: '{path}'

Note:

• Files and folders are included and excluded in the order you specify them!

• Please make sure your are putting the exclamation mark within quotation marks.

1.2. Configuration 7

organize Documentation, Release 1.10.1

Aliases

Instead of repeating the same folders in each and every rule you can use an alias for multiple folders which you can
then reference in each rule. Aliases are a standard feature of the YAML syntax.

Listing 9: config.yaml

all_my_messy_folders: &all
- ~/Desktop
- ~/Downloads
- ~/Documents
- ~/Dropbox

rules:
- folders: *all
filters: ...
actions: ...

- folders: *all
filters: ...
actions: ...

You can even use multiple folder lists:

Listing 10: config.yaml

private_folders: &private
- '/path/private'
- '~/path/private'

work_folders: &work
- '/path/work'
- '~/My work folder'

all_folders: &all
- *private
- *work

rules:
- folders: *private
filters: ...
actions: ...

- folders: *work
filters: ...
actions: ...

- folders: *all
filters: ...
actions: ...

same as *all
- folders:

- *work
- *private

filters: ...
actions: ...

8 Chapter 1. Contents:

organize Documentation, Release 1.10.1

1.2.5 Filter syntax

filters is a list of Filters. Filters are defined like this:

Listing 11: config.yaml

rules:
- folders: ...
actions: ...
filters:
filter without parameters
- FilterName

filter with a single parameter
- FilterName: parameter

filter expecting a list as parameter
- FilterName:
- first
- second
- third

filter with multiple parameters
- FilterName:

parameter1: true
option2: 10.51
third_argument: test string

Note: Every filter comes with multiple usage examples which should be easy to adapt for your use case!

1.2.6 Action syntax

actions is a list of Actions. Actions can be defined like this:

Listing 12: config.yaml

rules:
- folders: ...
actions:
action without parameters
- ActionName

action with a single parameter
- ActionName: parameter

filter with multiple parameters
- ActionName:

parameter1: true
option2: 10.51
third_argument: test string

Note: Every action comes with multiple usage examples which should be easy to adapt for your use case!

1.2. Configuration 9

organize Documentation, Release 1.10.1

Variable substitution (placeholders)

You can use placeholder variables in your actions.

Placeholder variables are used with curly braces {var}. You always have access to the variables {path},
{basedir} and {relative_path}:

• {path} – is the full path to the current file

• {basedir} – the current base folder (the base folder is the folder you specify in your configuration).

• {relative_path} – the relative path from {basedir} to {path}

Use the dot notation to access properties of {path}, {basedir} and {relative_path}:

• {path} – the full path to the current file

• {path.name} – the full filename including extension

• {path.stem} – just the file name without extension

• {path.suffix} – the file extension

• {path.parent} – the parent folder of the current file

• {path.parent.parent} – parent calls are chainable. . .

• {basedir} – the full path to the current base folder

• {basedir.parent} – the full path to the base folder’s parent

and any other property of the python pathlib.Path (official documentation) object.

Additionally Filters may emit placeholder variables when applied to a path. Check the documentation and examples
of the filter to see available placeholder variables and usage examples.

Some examples include:

• {lastmodified.year} – the year the file was last modified

• {regex.yournamedgroup} – anything you can extract via regular expressions

• {extension.upper} – the file extension in uppercase

• . . . and many more.

1.3 Filters

1.3.1 Created

class Created(years=0, months=0, weeks=0, days=0, hours=0, minutes=0, seconds=0, mode=’older’,
timezone=Timezone(’Etc/UTC’))

Matches files by created date

Parameters

• years (int) – specify number of years

• months (int) – specify number of months

• weeks (float) – specify number of weeks

• days (float) – specify number of days

• hours (float) – specify number of hours

10 Chapter 1. Contents:

https://docs.python.org/3/library/pathlib.html#methods-and-properties

organize Documentation, Release 1.10.1

• minutes (float) – specify number of minutes

• seconds (float) – specify number of seconds

• mode (str) – either ‘older’ or ‘newer’. ‘older’ matches all files created before the given
time, ‘newer’ matches all files created within the given time. (default = ‘older’)

• timezone (str) – specify timezone

Returns

• {created.year} – the year the file was created

• {created.month} – the month the file was created

• {created.day} – the day the file was created

• {created.hour} – the hour the file was created

• {created.minute} – the minute the file was created

• {created.second} – the second the file was created

Examples:

• Show all files on your desktop created at least 10 days ago:

Listing 13: config.yaml

rules:
- folders: '~/Desktop'
filters:
- created:

days: 10
actions:
- echo: 'Was created at least 10 days ago'

• Show all files on your desktop which were created within the last 5 hours:

Listing 14: config.yaml

rules:
- folders: '~/Desktop'
filters:
- created:

hours: 5
mode: newer

actions:
- echo: 'Was created within the last 5 hours'

• Sort pdfs by year of creation:

Listing 15: config.yaml

rules:
- folders: '~/Documents'
filters:
- extension: pdf
- created

actions:
- move: '~/Documents/PDF/{created.year}/'

1.3. Filters 11

organize Documentation, Release 1.10.1

• Use specific timezone when processing files

Listing 16: config.yaml

rules:
- folders: '~/Documents'
filters:
- extension: pdf
- created:

timezone: "Europe/Moscow"
actions:
- move: '~/Documents/PDF/{created.day}/{created.hour}/'

1.3.2 Duplicate

class Duplicate
Finds duplicate files.

This filter compares files byte by byte and finds identical files with potentially different filenames.

Returns

• {duplicate} – path to the duplicate source

Examples:

• Show all duplicate files in your desktop and download folder (and their subfolders).

Listing 17: config.yaml

rules:
- folders:

- ~/Desktop
- ~/Downloads
subfolders: true
filters:
- duplicate
actions:
- echo: "{path} is a duplicate of {duplicate}"

1.3.3 Exif

class Exif(*required_tags, **tag_filters)
Filter by image EXIF data

The exif filter can be used as a filter as well as a way to get exif information into your actions.

Returns

{exif} – a dict of all the collected exif inforamtion available in the file. Typically it consists
of the following tags (if present in the file):

• {exif.image} – information related to the main image

• {exif.exif} – Exif information

• {exif.gps} – GPS information

• {exif.interoperability} – Interoperability information

12 Chapter 1. Contents:

organize Documentation, Release 1.10.1

Examples:

• Show available EXIF data of your pictures:

Listing 18: config.yaml

rules:
- folders: ~/Pictures
subfolders: true
filters:
- exif

actions:
- echo: "{exif}"

• Copy all images which contain GPS information while keeping subfolder structure:

Listing 19: config.yaml

rules:
- folders: ~/Pictures
subfolders: true
filters:
- exif:

gps.gpsdate
actions:
- copy: ~/Pictures/with_gps/{relative_path}/

• Filter by camera manufacturer:

Listing 20: config.yaml

rules:
- folders: ~/Pictures
subfolders: true
filters:
- exif:

image.model: Nikon D3200
actions:
- move: '~/Pictures/My old Nikon/'

• Sort images by camera manufacturer. This will create folders for each camera model (for example
“Nikon D3200”, “iPhone 6s”, “iPhone 5s”, “DMC-GX80”) and move the pictures accordingly:

1.3. Filters 13

organize Documentation, Release 1.10.1

Listing 21: config.yaml

rules:
- folders: ~/Pictures
subfolders: true
filters:
- extension: jpg
- exif:

image.model
actions:
- move: '~/Pictures/{exif.image.model}/'

1.3.4 Extension

class Extension(*extensions)
Filter by file extension

Parameters extensions – The file extensions to match (does not need to start with a colon).

Returns

• {extension} – the original file extension (without colon)

• {extension.lower} – the file extension in lowercase

• {extension.upper} – the file extension in UPPERCASE

Examples:

• Match a single file extension:

Listing 22: config.yaml

rules:
- folders: '~/Desktop'
filters:
- extension: png

actions:
- echo: 'Found PNG file: {path}'

• Match multiple file extensions:

Listing 23: config.yaml

rules:
- folders: '~/Desktop'
filters:
- extension:
- .jpg
- jpeg

actions:
- echo: 'Found JPG file: {path}'

• Make all file extensions lowercase:

14 Chapter 1. Contents:

organize Documentation, Release 1.10.1

Listing 24: config.yaml

rules:
- folders: '~/Desktop'
filters:
- Extension

actions:
- rename: '{path.stem}.{extension.lower}'

• Using extension lists:

Listing 25: config.yaml

img_ext: &img
- png
- jpg
- tiff

audio_ext: &audio
- mp3
- wav
- ogg

rules:
- folders: '~/Desktop'
filters:
- extension:
- *img
- *audio

actions:
- echo: 'Found media file: {path}'

1.3.5 FileContent

class FileContent(expr)
Matches file content with the given regular expression

Parameters expr (str) – The regular expression to be matched.

Any named groups in your regular expression will be returned like this:

Returns

• {filecontent.yourgroupname} – The text matched with the named group (?
P<yourgroupname>)

Examples:

• Show the content of all your PDF files:

• Match an invoice with a regular expression and sort by customer:

Listing 26: config.yaml

rules:
- folders: '~/Desktop'
filters:
- filecontent: 'Invoice.*Customer (?P<customer>\w+)'

(continues on next page)

1.3. Filters 15

organize Documentation, Release 1.10.1

(continued from previous page)

actions:
- move: '~/Documents/Invoices/{filecontent.customer}/'

1.3.6 Filename

class Filename(match=’*’, *, startswith=”, contains=”, endswith=”, case_sensitive=True)
Match files by filename

Parameters

• match (str) – A matching string in simplematch-syntax (https://github.com/tfeldmann/
simplematch)

• startswith (str) – The filename must begin with the given string

• contains (str) – The filename must contain the given string

• endswith (str) – The filename (without extension) must end with the given string

• case_sensitive = True (bool) – By default, the matching is case sensitive. Change
this to False to use case insensitive matching.

Examples:

• Match all files starting with ‘Invoice’:

Listing 27: config.yaml

rules:
- folders: '~/Desktop'
filters:
- filename:

startswith: Invoice
actions:
- echo: 'This is an invoice'

• Match all files starting with ‘A’ end containing the string ‘hole’ (case insensitive)

Listing 28: config.yaml

rules:
- folders: '~/Desktop'
filters:
- filename:

startswith: A
contains: hole
case_sensitive: false

actions:
- echo: 'Found a match.'

• Match all files starting with ‘A’ or ‘B’ containing ‘5’ or ‘6’ and ending with ‘_end’

Listing 29: config.yaml

rules:
- folders: '~/Desktop'
filters:

(continues on next page)

16 Chapter 1. Contents:

https://github.com/tfeldmann/simplematch
https://github.com/tfeldmann/simplematch

organize Documentation, Release 1.10.1

(continued from previous page)

- filename:
startswith:
- A
- B

contains:
- 5
- 6

endswith: _end
case_sensitive: false

actions:
- echo: 'Found a match.'

1.3.7 FileSize

class FileSize(*conditions)
Matches files by file size

Parameters conditions (str) –

Accepts file size conditions, e.g: '>= 500 MB', '< 20k', '>0', '= 10 KiB'.

It is possible to define both lower and upper conditions like this: '>20k, < 1 TB', '>= 20 Mb, <25
Mb'. The filter will match if all given conditions are satisfied.

• Accepts all units from KB to YB.

• If no unit is given, kilobytes are assumend.

• If binary prefix is given (KiB, GiB) the size is calculated using base 1024.

Returns

• {filesize.bytes} – File size in bytes

Examples:

• Trash big downloads:

Listing 30: config.yaml

rules:
- folders: '~/Downloads'
filters:
- filesize: '> 0.5 GB'

actions:
- trash

• Move all JPEGS bigger > 1MB and <10 MB. Search all subfolders and keep the´ original relative
path.

Listing 31: config.yaml

rules:
- folders: '~/Pictures'
subfolders: true
filters:
- extension:

(continues on next page)

1.3. Filters 17

organize Documentation, Release 1.10.1

(continued from previous page)

- jpg
- jpeg

- filesize: '>1mb, <10mb'
actions:
- move: '~/Pictures/sorted/{relative_path}/'

1.3.8 LastModified

class LastModified(years=0, months=0, weeks=0, days=0, hours=0, minutes=0, seconds=0,
mode=’older’, timezone=Timezone(’Etc/UTC’))

Matches files by last modified date

Parameters

• years (int) – specify number of years

• months (int) – specify number of months

• weeks (float) – specify number of weeks

• days (float) – specify number of days

• hours (float) – specify number of hours

• minutes (float) – specify number of minutes

• seconds (float) – specify number of seconds

• mode (str) – either ‘older’ or ‘newer’. ‘older’ matches all files last modified before the
given time, ‘newer’ matches all files last modified within the given time. (default = ‘older’)

• timezone (str) – specify timezone

Returns

• {lastmodified.year} – the year the file was last modified

• {lastmodified.month} – the month the file was last modified

• {lastmodified.day} – the day the file was last modified

• {lastmodified.hour} – the hour the file was last modified

• {lastmodified.minute} – the minute the file was last modified

• {lastmodified.second} – the second the file was last modified

Examples:

• Show all files on your desktop last modified at least 10 days ago:

Listing 32: config.yaml

rules:
- folders: '~/Desktop'
filters:
- lastmodified:

days: 10
actions:
- echo: 'Was modified at least 10 days ago'

• Show all files on your desktop which were modified within the last 5 hours:

18 Chapter 1. Contents:

organize Documentation, Release 1.10.1

Listing 33: config.yaml

rules:
- folders: '~/Desktop'
filters:
- lastmodified:

hours: 5
mode: newer

actions:
- echo: 'Was modified within the last 5 hours'

• Sort pdfs by year of last modification

Listing 34: config.yaml

rules:
- folders: '~/Documents'
filters:
- extension: pdf
- LastModified

actions:
- move: '~/Documents/PDF/{lastmodified.year}/'

• Use specific timezone when processing files

Listing 35: config.yaml

rules:
- folders: '~/Documents'
filters:
- extension: pdf
- lastmodified:

timezone: "Europe/Moscow"
actions:
- move: '~/Documents/PDF/{lastmodified.day}/{lastmodified.hour}/'

1.3.9 MimeType

class MimeType(*mimetypes)
Filter by MIME type associated with the file extension.

Supports a single string or list of MIME type strings as argument. The types don’t need to be fully specified, for
example “audio” matches everything from “audio/midi” to “audio/quicktime”.

You can see a list of known MIME types on your system by running this oneliner:

python3 -c "import mimetypes as m; print('\n'.join(sorted(set(m.common_types.
→˓values()) | set(m.types_map.values()))))"

Examples:

• Show MIME types:

1.3. Filters 19

organize Documentation, Release 1.10.1

Listing 36: config.yaml

rules:
- folders: '~/Downloads'
filters:
- mimetype

actions:
- echo: '{mimetype}'

• Filter by “image” mimetype:

Listing 37: config.yaml

rules:
- folders: '~/Downloads'
filters:
- mimetype: image

actions:
- echo: This file is an image: {mimetype}

• Filter by specific MIME type:

Listing 38: config.yaml

rules:
- folders: '~/Desktop'
filters:
- mimetype: application/pdf

actions:
- echo: 'Found a PDF file'

• Filter by multiple specific MIME types:

Listing 39: config.yaml

rules:
- folders: '~/Music'
filters:
- mimetype:
- application/pdf
- audio/midi

actions:
- echo: 'Found Midi or PDF.'

1.3.10 Python

class Python(code)
Use python code to filter files.

Parameters code (str) – The python code to execute. The code must contain a return state-
ment.

Returns

• If your code returns False or None the file is filtered out, otherwise the file is passed on
to the next filters.

20 Chapter 1. Contents:

organize Documentation, Release 1.10.1

• {python} contains the returned value. If you return a dictionary (for example return
{"some_key": some_value, "nested": {"k": 2}}) it will be accessible
via dot syntax in your actions: {python.some_key}, {python.nested.k}.

Examples:

• A file name reverser.

Listing 40: config.yaml

rules:
- folders: ~/Documents
filters:
- extension
- python: |

return {"reversed_name": path.stem[::-1]}
actions:
- rename: '{python.reversed_name}.{extension}'

• A filter for odd student numbers. Assuming the folder ~/Students contains the files
student-01.jpg, student-01.txt, student-02.txt and student-03.txt this
rule will print "Odd student numbers: student-01.txt" and "Odd student
numbers: student-03.txt"

Listing 41: config.yaml

rules:
- folders: ~/Students/
filters:
- python: |

return int(path.stem.split('-')[1]) % 2 == 1
actions:
- echo: 'Odd student numbers: {path.name}'

• Advanced usecase. You can access data from previous filters in your python code. This can be used to
match files and capturing names with a regular expression and then renaming the files with the output
of your python script.

Listing 42: config.yaml

rules:
- folders: files
filters:
- extension: txt
- regex: (?P<firstname>\w+)-(?P<lastname>\w+)\..*
- python: |

emails = {
"Betts": "dbetts@mail.de",
"Cornish": "acornish@google.com",
"Bean": "dbean@aol.com",
"Frey": "l-frey@frey.org",

}
if regex.lastname in emails: # get emails from wherever

return {"mail": emails[regex.lastname]}
actions:
- rename: '{python.mail}.txt'

Result:

1.3. Filters 21

organize Documentation, Release 1.10.1

– Devonte-Betts.txt becomes dbetts@mail.de.txt

– Alaina-Cornish.txt becomes acornish@google.com.txt

– Dimitri-Bean.txt becomes dbean@aol.com.txt

– Lowri-Frey.txt becomes l-frey@frey.org.txt

– Someunknown-User.txt remains unchanged because the email is not found

1.3.11 Regex

class Regex(expr)
Matches filenames with the given regular expression

Parameters expr (str) – The regular expression to be matched.

Any named groups in your regular expression will be returned like this:

Returns

• {regex.yourgroupname} – The text matched with the named group (?
P<yourgroupname>)

Examples:

• Match an invoice with a regular expression:

Listing 43: config.yaml

rules:
- folders: '~/Desktop'
filters:
- regex: '^RG(\d{12})-sig\.pdf$'

actions:
- move: '~/Documents/Invoices/1und1/'

• Match and extract data from filenames with regex named groups: This is just like the previous example
but we rename the invoice using the invoice number extracted via the regular expression and the named
group the_number.

Listing 44: config.yaml

rules:
- folders: ~/Desktop
filters:
- regex: '^RG(?P<the_number>\d{12})-sig\.pdf$'

actions:
- move: ~/Documents/Invoices/1und1/{regex.the_number}.pdf

1.4 Actions

1.4.1 Copy

class Copy(dest[, overwrite=False][, counter_separator=’ ’])
Copy a file to a new location. If the specified path does not exist it will be created.

22 Chapter 1. Contents:

organize Documentation, Release 1.10.1

Parameters

• dest (str) – The destination where the file should be copied to. If dest ends with a slash
/ backslash, the file will be copied into this folder and keep its original name.

• overwrite (bool) – specifies whether existing files should be overwritten. Otherwise it
will start enumerating files (append a counter to the filename) to resolve naming conflicts.
[Default: False]

• counter_separator (str) – specifies the separator between filename and the ap-
pended counter. Only relevant if overwrite is disabled. [Default: ' ']

Examples:

• Copy all pdfs into ~/Desktop/somefolder/ and keep filenames

Listing 45: config.yaml

rules:
- folders: ~/Desktop
filters:
- extension: pdf

actions:
- copy: '~/Desktop/somefolder/'

• Use a placeholder to copy all .pdf files into a “PDF” folder and all .jpg files into a “JPG” folder.
Existing files will be overwritten.

Listing 46: config.yaml

rules:
- folders: ~/Desktop
filters:
- extension:

- pdf
- jpg

actions:
- copy:

dest: '~/Desktop/{extension.upper}/'
overwrite: true

• Copy into the folder Invoices. Keep the filename but do not overwrite existing files. To prevent
overwriting files, an index is added to the filename, so somefile.jpg becomes somefile 2.jpg. The
counter separator is ‘ ‘ by default, but can be changed using the counter_separator property.

Listing 47: config.yaml

rules:
- folders: ~/Desktop/Invoices
filters:
- extension:

- pdf
actions:
- copy:

dest: '~/Documents/Invoices/'
overwrite: false
counter_separator: '_'

1.4. Actions 23

organize Documentation, Release 1.10.1

1.4.2 Delete

class Delete
Delete a file from disk.

Deleted files have no recovery option! Using the Trash action is strongly advised for most use-cases!

Example:

• Delete all JPGs and PNGs on the desktop which are older than one year:

Listing 48: config.yaml

rules:
- folders: '~/Desktop'
- filters:

- lastmodified:
- days: 365

- extension:
- png
- jpg

- actions:
- delete

1.4.3 Echo

class Echo(msg)
Prints the given (formatted) message. This can be useful to test your rules, especially if you use formatted
messages.

Parameters msg (str) – The message to print (can be formatted)

Example:

• Prints “Found old file” for each file older than one year:

Listing 49: config.yaml

rules:
- folders: ~/Desktop
filters:
- lastmodified:

days: 365
actions:
- echo: 'Found old file'

• Prints “Hello World!” and filepath for each file on the desktop:

Listing 50: config.yaml

rules:
- folders:

- ~/Desktop
actions:
- echo: 'Hello World! {path}'

• This will print something like Found a PNG: "test.png" for each file on your desktop:

24 Chapter 1. Contents:

organize Documentation, Release 1.10.1

Listing 51: config.yaml

rules:
- folders:

- ~/Desktop
filters:
- Extension

actions:
- echo: 'Found a {extension.upper}: "{path.name}"'

• Show the {basedir} and {path} of all files in ‘~/Downloads’, ‘~/Desktop’ and their subfolders:

Listing 52: config.yaml

rules:
- folders:

- ~/Desktop
- ~/Downloads

subfolders: true
actions:
- echo: 'Basedir: {basedir}'
- echo: 'Path: {path}'

1.4.4 Move

class Move(dest[, overwrite=False][, counter_separator=’ ’])
Move a file to a new location. The file can also be renamed. If the specified path does not exist it will be created.

If you only want to rename the file and keep the folder, it is easier to use the Rename-Action.

Parameters

• dest (str) – The destination folder or path. If dest ends with a slash / backslash, the file
will be moved into this folder and not renamed.

• overwrite (bool) – specifies whether existing files should be overwritten. Otherwise it
will start enumerating files (append a counter to the filename) to resolve naming conflicts.
[Default: False]

• counter_separator (str) – specifies the separator between filename and the ap-
pended counter. Only relevant if overwrite is disabled. [Default: ' ']

Examples:

• Move all pdfs and jpgs from the desktop into the folder “~/Desktop/media/”. Filenames are not
changed.

Listing 53: config.yaml

rules:
- folders: ~/Desktop
filters:
- extension:

- pdf
- jpg

actions:
- move: '~/Desktop/media/'

1.4. Actions 25

organize Documentation, Release 1.10.1

• Use a placeholder to move all .pdf files into a “PDF” folder and all .jpg files into a “JPG” folder.
Existing files will be overwritten.

Listing 54: config.yaml

rules:
- folders: ~/Desktop
filters:
- extension:

- pdf
- jpg

actions:
- move:

dest: '~/Desktop/{extension.upper}/'
overwrite: true

• Move pdfs into the folder Invoices. Keep the filename but do not overwrite existing files. To prevent
overwriting files, an index is added to the filename, so somefile.jpg becomes somefile 2.
jpg.

Listing 55: config.yaml

rules:
- folders: ~/Desktop/Invoices
filters:
- extension:

- pdf
actions:
- move:

dest: '~/Documents/Invoices/'
overwrite: false
counter_separator: '_'

1.4.5 Python

class Python(code)
Execute python code in your config file.

Parameters code (str) – The python code to execute

Examples:

• A basic example that shows how to get the current file path and do some printing in a for loop. The |
is yaml syntax for defining a string literal spanning multiple lines.

Listing 56: config.yaml

rules:
- folders: '~/Desktop'
actions:
- python: |

print('The path of the current file is %s' % path)
for _ in range(5):

print('Heyho, its me from the loop')

• You can access filter data:

26 Chapter 1. Contents:

organize Documentation, Release 1.10.1

Listing 57: config.yaml

rules:
- folders: ~/Desktop
filters:
- regex: '^(?P<name>.*)\.(?P<extension>.*)$'

actions:
- python: |

print('Name: %s' % regex.name)
print('Extension: %s' % regex.extension)

• You have access to all the python magic – do a google search for each filename starting with an
underscore:

Listing 58: config.yaml

rules:
- folders: ~/Desktop
filters:
- filename:

startswith: '_'
actions:
- python: |

import webbrowser
webbrowser.open('https://www.google.com/search?q=%s' % path.stem)

1.4.6 Rename

class Rename(dest[, overwrite=False][, counter_separator=’ ’])
Renames a file.

Parameters

• name (str) – The new filename. Can be a format string which uses file attributes from a
filter.

• overwrite (bool) – specifies whether existing files should be overwritten. Otherwise it
will start enumerating files (append a counter to the filename) to resolve naming conflicts.
[Default: False]

• counter_separator (str) – specifies the separator between filename and the ap-
pended counter. Only relevant if overwrite is disabled. [Default: ' ']

Examples:

• Convert all .PDF file extensions to lowercase (.pdf):

Listing 59: config.yaml

rules:
- folders: '~/Desktop'
filters:
- extension: PDF

actions:
- rename: "{path.stem}.pdf"

• Convert all file extensions to lowercase:

1.4. Actions 27

organize Documentation, Release 1.10.1

Listing 60: config.yaml

rules:
- folders: '~/Desktop'
filters:
- Extension

actions:
- rename: "{path.stem}.{extension.lower}"

1.4.7 Shell

class Shell(cmd: str)
Executes a shell command

Parameters cmd (str) – The command to execute.

Example:

• (macOS) Open all pdfs on your desktop:

Listing 61: config.yaml

rules:
- folders: '~/Desktop'
filters:
- extension: pdf

actions:
- shell: 'open "{path}"'

1.4.8 Trash

class Trash
Move a file into the trash.

Example:

• Move all JPGs and PNGs on the desktop which are older than one year into the trash:

Listing 62: config.yaml

rules:
- folders: '~/Desktop'
- filters:

- lastmodified:
- days: 365

- extension:
- png
- jpg

- actions:
- trash

28 Chapter 1. Contents:

organize Documentation, Release 1.10.1

1.4.9 macOS Tags

class MacOSTags(*tags)
Add macOS tags.

Example:

• Add a single tag:

Listing 63: config.yaml

rules:
- folders: '~/Documents/Invoices'
- filters:

- filename:
startswith: "Invoice"

- extension: pdf
- actions:

- macos_tags: Invoice

• Adding multiple tags (“Invoice” and “Important”):

Listing 64: config.yaml

rules:
- folders: '~/Documents/Invoices'
- filters:

- filename:
startswith: "Invoice"

- extension: pdf
- actions:

- macos_tags:
- Important
- Invoice

• Specify tag colors. Available colors are none, gray, green, purple, blue, yellow, red, orange.

Listing 65: config.yaml

rules:
- folders: '~/Documents/Invoices'
- filters:

- filename:
startswith: "Invoice"

- extension: pdf
- actions:

- macos_tags:
- Important (green)
- Invoice (purple)

• Add a templated tag with color:

Listing 66: config.yaml

rules:
- folders: '~/Documents/Invoices'
- filters:

- created

(continues on next page)

1.4. Actions 29

organize Documentation, Release 1.10.1

(continued from previous page)

- actions:
- macos_tags:
- Year-{created.year} (red)

If you find any bugs or have an idea for a new feature please don’t hesitate to open an issue on GitHub.

30 Chapter 1. Contents:

https://github.com/tfeldmann/organize/issues?state=open

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

31

organize Documentation, Release 1.10.1

32 Chapter 2. Indices and tables

Python Module Index

a
actions, 22

f
filters, 10

33

organize Documentation, Release 1.10.1

34 Python Module Index

Index

A
actions (module), 22

C
Copy (class in actions), 22
Created (class in filters), 10

D
Delete (class in actions), 24
Duplicate (class in filters), 12

E
Echo (class in actions), 24
Exif (class in filters), 12
Extension (class in filters), 14

F
FileContent (class in filters), 15
Filename (class in filters), 16
FileSize (class in filters), 17
filters (module), 10

L
LastModified (class in filters), 18

M
MacOSTags (class in actions), 29
MimeType (class in filters), 19
Move (class in actions), 25

P
Python (class in actions), 26
Python (class in filters), 20

R
Regex (class in filters), 22
Rename (class in actions), 27

S
Shell (class in actions), 28

T
Trash (class in actions), 28

35

	Contents:
	Quickstart
	Configuration
	Filters
	Actions

	Indices and tables
	Python Module Index
	Index

