

 [image: _images/organize.svg]
organize

organize is a command line utility to automate file organization tasks.

http://github.com/tfeldmann/organize

Contents:

	Quickstart
	Installation

	Creating your first config file

	Simulate and run

	Configuration
	Editing the configuration

	Environment variables

	Rule syntax

	Folder syntax
	Globstrings

	Excluding files and folders

	Aliases

	Filter syntax

	Action syntax
	Variable substitution (placeholders)

	Filters
	Extension

	Filename

	LastModified

	Created

	Regex

	Actions
	Move

	Copy

	Rename

	Trash

	Shell

	Python

	Echo

If you find any bugs or have an idea for a new feature please don’t hesitate to open an issue [https://github.com/tfeldmann/organize/issues?state=open] on GitHub.

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Installation

Requirements: Python 3.3+

organize is installed via pip:

On macOS / Windows:
$ pip3 install organize-tool

On Linux:
$ sudo pip3 install organize-tool

Creating your first config file

To edit the configuration in your $EDITOR, run:

$ organize config

For example your configuration file could look like this:

config.yaml

 rules:
 # move screenshots into "Screenshots" folder
 - folders:
 - ~/Desktop
 filters:
 - filename:
 startswith: Screen Shot
 actions:
 - move: ~/Desktop/Screenshots/

 # move incomplete downloads older > 30 days into the trash
 - folders:
 - ~/Downloads
 filters:
 - extension:
 - crdownload
 - part
 - download
 - lastmodified:
 days: 30
 actions:
 - trash

Note

You can run $ organize config --path to show the full path to the configuration file.

Simulate and run

After you saved the configuration file, run $ organize sim to show a simulation of how your files would be organized.

If you like what you see, run $ organize run to organize your files.

Note

Congrats! You just automated some tedious cleaning tasks!
Continue to Configuration to see the full potential of organize or skip
directly to the Filters and Actions.

Configuration

Editing the configuration

All configuration takes place in your config.yaml file.

	To edit your configuration in $EDITOR run:

$ organize config # example: "EDITOR=vim organize config"

	To show the full path to your configuration file:

$ organize config --path

	To open the folder containing the configuration file:

$ organize config --open-folder

	To debug your configuration run:

$ organize config --debug

Environment variables

	$EDITOR - The editor used to edit the config file.

	$ORGANIZE_CONFIG - The config file path. Is overridden by --config-file cmd line argument.

Rule syntax

The rule configuration is done in YAML [https://learnxinyminutes.com/docs/yaml/].
You need a top-level element rules which contains a list of rules.
Each rule defines folders, filters (optional) and actions.

config.yaml

rules:
 - folders:
 - ~/Desktop
 - /some/folder/
 filters:
 - lastmodified:
 days: 40
 mode: newer
 - extension: pdf
 actions:
 - move: ~/Desktop/Target/
 - trash

 - folders:
 - ~/Inbox
 filters:
 - extension: pdf
 actions:
 - move: ~/otherinbox
 # optional settings:
 enabled: true
 subfolders: true
 system_files: false

	folders is a list of folders you want to organize.

	filters is a list of filters to apply to the files - you can filter by file extension, last modified date, regular expressions and many more. See Filters.

	actions is a list of actions to apply to the filtered files. You can put them into the trash, move them into another folder and many more. See Actions.

Other optional per rule settings:

	enabled can be used to temporarily disable single rules. Default = true

	subfolders specifies whether subfolders should be included in the search. Default = false. This setting only applies to folders without glob wildcards.

	system_files specifies whether to include system files (desktop.ini, thumbs.db, .DS_Store) in the search. Default = false

Folder syntax

Every rule in your configuration file needs to know the folders it applies to.
The easiest way is to define the rules like this:

config.yaml

rules:
 - folders:
 - /path/one
 - /path/two
 filters: ...
 actions: ...

 - folders:
 - /path/one
 - /another/path
 filters: ...
 actions: ...

Globstrings

You can use globstrings in the folder lists. For example to get all files with filenames ending with _ui and any file extension you can use:

config.yaml

rules:
 - folders:
 - '~/Downloads/*_ui.*'
 actions:
 - echo: '{path}'

You can use globstrings to recurse through subdirectories (alternatively you can use the subfolders: true setting as shown below)

config.yaml

rules:
 - folders:
 - '~/Downloads/**/*.*'
 actions:
 - echo: 'base {basedir}, path {path}, relative: {relative_path}'

 # alternative syntax
 - folders:
 - ~/Downloads
 subfolders: true
 actions:
 - echo: 'base {basedir}, path {path}, relative: {relative_path}'

The following example recurses through all subdirectories in your downloads folder and finds files with ending in .c and .h.

config.yaml

rules:
 - folders:
 - '~/Downloads/**/*.[c|h]'
 actions:
 - echo: '{path}'

Note

	You have to target files with the globstring, not folders. So to scan through all folders starting with log_ you would write yourpath/log_*/*

Excluding files and folders

Files and folders can be excluded by prepending an exclamation mark. The following example selects all files
in ~/Downloads and its subfolders - excluding the folder Software:

config.yaml

rules:
 - folders:
 - '~/Downloads/**/*'
 - '! ~/Downloads/Software'
 actions:
 - echo: '{path}'

Globstrings can be used to exclude only specific files / folders. This example:

	adds all files in ~/Downloads

	exludes files from that list whose name contains the word system ending in .bak

	adds all files from ~/Documents

	excludes the file ~/Documents/important.txt.

config.yaml

rules:
 - folders:
 - '~/Downloads/**/*'
 - '! ~/Downloads/**/*system*.bak'
 - '~/Documents'
 - '! ~/Documents/important.txt'
 actions:
 - echo: '{path}'

Note

	Files and folders are included and excluded in the order you specify them!

	Please make sure your are putting the exclamation mark within quotation marks.

Aliases

Instead of repeating the same folders in each and every rule you can use an alias for multiple folders which you can then reference in each rule.
Aliases are a standard feature of the YAML syntax.

config.yaml

all_my_messy_folders: &all
 - ~/Desktop
 - ~/Downloads
 - ~/Documents
 - ~/Dropbox

rules:
 - folders: *all
 filters: ...
 actions: ...

 - folders: *all
 filters: ...
 actions: ...

You can even use multiple folder lists:

config.yaml

private_folders: &private
 - '/path/private'
 - '~/path/private'

work_folders: &work
 - '/path/work'
 - '~/My work folder'

all_folders: &all
 - *private
 - *work

rules:
 - folders: *private
 filters: ...
 actions: ...

 - folders: *work
 filters: ...
 actions: ...

 - folders: *all
 filters: ...
 actions: ...

 # same as *all
 - folders:
 - *work
 - *private
 filters: ...
 actions: ...

Filter syntax

filters is a list of Filters.
Filters are defined like this:

config.yaml

rules:
 - folders: ...
 actions: ...
 filters:
 # filter without parameters
 - FilterName

 # filter with a single parameter
 - FilterName: parameter

 # filter expecting a list as parameter
 - FilterName:
 - first
 - second
 - third

 # filter with multiple parameters
 - FilterName:
 parameter1: true
 option2: 10.51
 third_argument: test string

Note

Every filter comes with multiple usage examples which should be easy to adapt for your use case!

Action syntax

actions is a list of Actions.
Actions can be defined like this:

config.yaml

rules:
 - folders: ...
 actions:
 # action without parameters
 - ActionName

 # action with a single parameter
 - ActionName: parameter

 # filter with multiple parameters
 - ActionName:
 parameter1: true
 option2: 10.51
 third_argument: test string

Note

Every action comes with multiple usage examples which should be easy to adapt for your use case!

Variable substitution (placeholders)

You can use placeholder variables in your actions.

Placeholder variables are used with curly braces {var}.
You always have access to the variables {path}, {basedir} and {relative_path}:

	{path} – is the full path to the current file

	{basedir} – the current base folder (the base folder is the folder you
specify in your configuration).

	{relative_path} – the relative path from {basedir} to {path}

Use the dot notation to access properties of {path}, {basedir} and {relative_path}:

	{path} – the full path to the current file

	{path.name} – the full filename including extension

	{path.stem} – just the file name without extension

	{path.suffix} – the file extension

	{path.parent} – the parent folder of the current file

	{path.parent.parent} – parent calls are chainable…

	{basedir} – the full path to the current base folder

	{basedir.parent} – the full path to the base folder’s parent

and any other property of the python pathlib.Path (official documentation [https://docs.python.org/3/library/pathlib.html#methods-and-properties]) object.

Additionally Filters may emit placeholder variables when applied to a
path. Check the documentation and examples of the filter to see available
placeholder variables and usage examples.

Some examples include:

	{lastmodified.year} – the year the file was last modified

	{regex.yournamedgroup} – anything you can extract via regular expressions

	{extension.upper} – the file extension in uppercase

	… and many more.

Filters

Extension

	
class Extension(*extensions)

	Filter by file extension

	Parameters

	extensions – The file extensions to match (does not need to start with a colon).

	Returns

	
	{extension} – the original file extension (without colon)

	{extension.lower} – the file extension in lowercase

	{extension.upper} – the file extension in UPPERCASE

Examples:

	Match a single file extension:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - extension: png
 actions:
 - echo: 'Found PNG file: {path}'

	Match multiple file extensions:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - extension:
 - .jpg
 - jpeg
 actions:
 - echo: 'Found JPG file: {path}'

	Make all file extensions lowercase:

config.yaml

rules:
 - folder: '~/Desktop'
 filters:
 - Extension
 actions:
 - rename: '{path.stem}.{extension.lower}'

	Using extension lists:

config.yaml

img_ext: &img
 - png
 - jpg
 - tiff

audio_ext: &audio
 - mp3
 - wav
 - ogg

rules:
 - folders: '~/Desktop'
 filters:
 - extension:
 - *img
 - *audio
 actions:
 - echo: 'Found media file: {path}'

Filename

	
class Filename(startswith='', contains='', endswith='', case_sensitive=True)

	Match files by filename

	Parameters

	
	startswith (str) – The filename must begin with the given string

	contains (str) – The filename must contain the given string

	endswith (str) – The filename (without extension) must end with the given string

	case_sensitive = True (bool) – By default, the matching is case sensitive. Change this to False to use
case insensitive matching.

	Examples:

	
	Match all files starting with ‘Invoice’:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - filename:
 startswith: Invoice
 actions:
 - echo: 'This is an invoice'

	Match all files starting with ‘A’ end containing the string ‘hole’
(case insensitive)

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - filename:
 startswith: A
 contains: hole
 case_sensitive: false
 actions:
 - echo: 'Found a match.'

LastModified

	
class LastModified(days=0, hours=0, minutes=0, seconds=0, mode='older')

	Matches files by last modified date

	Parameters

	
	days (int) – specify number of days

	hours (int) – specify number of hours

	minutes (int) – specify number of minutes

	mode (str) – either ‘older’ or ‘newer’. ‘older’ matches all files last modified
before the given time, ‘newer’ matches all files last modified within
the given time. (default = ‘older’)

	Returns

	
	{lastmodified.year} – the year the file was last modified

	{lastmodified.month} – the month the file was last modified

	{lastmodified.day} – the day the file was last modified

	{lastmodified.hour} – the hour the file was last modified

	{lastmodified.minute} – the minute the file was last modified

	{lastmodified.second} – the second the file was last modified

	Examples:

	
	Show all files on your desktop last modified at least 10 days ago:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - lastmodified:
 days: 10
 actions:
 - echo: 'Was modified at least 10 days ago'

	Show all files on your desktop which were modified within the last
5 hours:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - lastmodified:
 hours: 5
 mode: newer
 actions:
 - echo: 'Was modified within the last 5 hours'

	Sort pdfs by year of last modification

config.yaml

rules:
 - folders: '~/Documents'
 filters:
 - extension: pdf
 - LastModified
 actions:
 - move: '~/Documents/PDF/{lastmodified.year}/'

Created

	
class Created(days=0, hours=0, minutes=0, seconds=0, mode='older')

	Matches files by created date

	Parameters

	
	days (int) – specify number of days

	hours (int) – specify number of hours

	minutes (int) – specify number of minutes

	mode (str) – either ‘older’ or ‘newer’. ‘older’ matches all files created before the given
time, ‘newer’ matches all files created within the given time.
(default = ‘older’)

	Returns

	
	{created.year} – the year the file was created

	{created.month} – the month the file was created

	{created.day} – the day the file was created

	{created.hour} – the hour the file was created

	{created.minute} – the minute the file was created

	{created.second} – the second the file was created

	Examples:

	
	Show all files on your desktop created at least 10 days ago:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - created:
 days: 10
 actions:
 - echo: 'Was created at least 10 days ago'

	Show all files on your desktop which were created within the last 5 hours:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - created:
 hours: 5
 mode: newer
 actions:
 - echo: 'Was created within the last 5 hours'

	Sort pdfs by year of creation:

config.yaml

rules:
 - folders: '~/Documents'
 filters:
 - extension: pdf
 - created
 actions:
 - move: '~/Documents/PDF/{created.year}/'

Regex

	
class Regex(expr)

	Matches filenames with the given regular expression

	Parameters

	expr (str) – The regular expression to be matched.

Any named groups in your regular expression will be returned like this:

	Returns

	
	{regex.yourgroupname} – The text matched with the named group
(?P<yourgroupname>)

	Examples:

	
	Match an invoice with a regular expression:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - regex: '^RG(\d{12})-sig\.pdf$'
 actions:
 - move: '~/Documents/Invoices/1und1/'

	Match and extract data from filenames with regex named groups:
This is just like the previous example but we rename the invoice using
the invoice number extracted via the regular expression and the named
group the_number.

config.yaml

rules:
 - folders: ~/Desktop
 filters:
 - regex: '^RG(?P<the_number>\d{12})-sig\.pdf$'
 actions:
 - move: ~/Documents/Invoices/1und1/{regex.the_number}.pdf

Actions

Move

	
class Move(dest[, overwrite=False][, counter_separator=' '])

	Move a file to a new location. The file can also be renamed.
If the specified path does not exist it will be created.

If you only want to rename the file and keep the folder, it is
easier to use the Rename-Action.

	Parameters

	
	dest (str) – The destination folder or path.
If dest ends with a slash / backslash, the file will be moved into
this folder and not renamed.

	overwrite (bool) – specifies whether existing files should be overwritten.
Otherwise it will start enumerating files (append a counter to the
filename) to resolve naming conflicts. [Default: False]

	counter_separator (str) – specifies the separator between filename and the appended counter.
Only relevant if overwrite is disabled. [Default: ' ']

	Examples:

	
	Move all pdfs and jpgs from the desktop into the folder “~/Desktop/media/”.
Filenames are not changed.

config.yaml

rules:
 - folders: ~/Desktop
 filters:
 - extension:
 - pdf
 - jpg
 actions:
 - move: '~/Desktop/media/'

	Use a placeholder to move all .pdf files into a “PDF” folder and all
.jpg files into a “JPG” folder. Existing files will be overwritten.

config.yaml

rules:
 - folders: ~/Desktop
 filters:
 - extension:
 - pdf
 - jpg
 actions:
 - move:
 dest: '~/Desktop/{extension.upper}/'
 overwrite: true

	Move pdfs into the folder Invoices. Keep the filename but do not
overwrite existing files. To prevent overwriting files, an index is
added to the filename, so somefile.jpg becomes somefile 2.jpg.

config.yaml

rules:
 - folders: ~/Desktop/Invoices
 filters:
 - extension:
 - pdf
 actions:
 - move:
 dest: '~/Documents/Invoices/'
 overwrite: false
 counter_separator: '_'

Copy

	
class Copy(dest[, overwrite=False][, counter_separator=' '])

	Copy a file to a new location.
If the specified path does not exist it will be created.

	Parameters

	
	dest (str) – The destination where the file should be copied to.
If dest ends with a slash / backslash, the file will be copied into
this folder and keep its original name.

	overwrite (bool) – specifies whether existing files should be overwritten.
Otherwise it will start enumerating files (append a counter to the
filename) to resolve naming conflicts. [Default: False]

	counter_separator (str) – specifies the separator between filename and the appended counter.
Only relevant if overwrite is disabled. [Default: ' ']

	Examples:

	
	Copy all pdfs into ~/Desktop/somefolder/ and keep filenames

config.yaml

rules:
 - folders: ~/Desktop
 filters:
 - extension: pdf
 actions:
 - copy: '~/Desktop/somefolder/'

	Use a placeholder to copy all .pdf files into a “PDF” folder and all .jpg
files into a “JPG” folder. Existing files will be overwritten.

config.yaml

rules:
 - folders: ~/Desktop
 filters:
 - extension:
 - pdf
 - jpg
 actions:
 - copy:
 dest: '~/Desktop/{extension.upper}/'
 overwrite: true

	Copy into the folder Invoices. Keep the filename but do not
overwrite existing files. To prevent overwriting files, an index is
added to the filename, so somefile.jpg becomes somefile 2.jpg.
The counter separator is ‘ ‘ by default, but can be changed using
the counter_separator property.

config.yaml

rules:
 - folders: ~/Desktop/Invoices
 filters:
 - extension:
 - pdf
 actions:
 - copy:
 dest: '~/Documents/Invoices/'
 overwrite: false
 counter_separator: '_'

Rename

	
class Rename(dest[, overwrite=False][, counter_separator=' '])

	Renames a file.

	Parameters

	
	name (str) – The new filename.
Can be a format string which uses file attributes from a filter.

	overwrite (bool) – specifies whether existing files should be overwritten.
Otherwise it will start enumerating files (append a counter to the
filename) to resolve naming conflicts. [Default: False]

	counter_separator (str) – specifies the separator between filename and the appended counter.
Only relevant if overwrite is disabled. [Default: ' ']

	Examples:

	
	Convert all .PDF file extensions to lowercase (.pdf):

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - extension: PDF
 actions:
 - rename: "{path.stem}.pdf"

	Convert all file extensions to lowercase:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - Extension
 actions:
 - rename: "{path.stem}.{extension.lower}"

Trash

	
class Trash

	Move a file into the trash.

	Example:

	
	Move all JPGs and PNGs on the desktop which are older than one year
into the trash:

config.yaml

rules:
 - folders: '~/Desktop'
 - filters:
 - lastmodified:
 - days: 365
 - extension:
 - png
 - jpg
 - actions:
 - trash

Shell

	
class Shell(cmd: str)

	Executes a shell command

	Parameters

	cmd (str) – The command to execute.

	Example:

	
	(macOS) Open all pdfs on your desktop:

config.yaml

rules:
 - folders: '~/Desktop'
 filters:
 - extension: pdf
 actions:
 - shell: 'open "{path}"'

Python

	
class Python(code)

	Execute python code in your config file.

	Parameters

	code (str) – The python code to execute

	Examples:

	
	A basic example that shows how to get the current file path and do some
printing in a for loop. The | is yaml syntax for defining a string
literal spanning multiple lines.

config.yaml

rules:
- folders: '~/Desktop'
 actions:
 - python: |
 print('The path of the current file is %s' % path)
 for _ in range(5):
 print('Heyho, its me from the loop')

	You can access filter data:

config.yaml

rules:
- folders: ~/Desktop
 filters:
 - regex: '^(?P<name>.*)\.(?P<extension>.*)$'
 actions:
 - python: |
 print('Name: %s' % regex.name)
 print('Extension: %s' % regex.extension)

	You have access to all the python magic – do a google search for each
filename starting with an underscore:

config.yaml

rules:
- folders: ~/Desktop
 filters:
 - filename:
 startswith: '_'
 actions:
 - python: |
 import webbrowser
 webbrowser.open('https://www.google.com/search?q=%s' % path.stem)

Echo

	
class Echo(msg)

	Prints the given (formatted) message. This can be useful to test your rules,
especially if you use formatted messages.

	Parameters

	msg (str) – The message to print (can be formatted)

	Example:

	
	Prints “Found old file” for each file older than one year:

config.yaml

rules:
 - folders: ~/Desktop
 filters:
 - lastmodified:
 days: 365
 actions:
 - echo: 'Found old file'

	Prints “Hello World!” and filepath for each file on the desktop:

config.yaml

rules:
 - folders:
 - ~/Desktop
 actions:
 - echo: 'Hello World! {path}'

	This will print something like Found a PNG: "test.png" for each
file on your desktop:

config.yaml

rules:
 - folders:
 - ~/Desktop
 filters:
 - Extension
 actions:
 - echo: 'Found a {extension.upper}: "{path.name}"'

	Show the {basedir} and {path} of all files in ‘~/Downloads’,
‘~/Desktop’ and their subfolders:

config.yaml

rules:
 - folders:
 - ~/Desktop
 - ~/Downloads
 subfolders: true
 actions:
 - echo: 'Basedir: {basedir}'
 - echo: 'Path: {path}'

 Python Module Index

 a |
 f

 		 	

 		
 a	

 	
 	
 actions	

 		 	

 		
 f	

 	
 	
 filters	

Index

 A
 | C
 | E
 | F
 | L
 | M
 | P
 | R
 | S
 | T

A

 	
 	actions (module)

C

 	
 	Copy (class in actions)

 	
 	Created (class in filters)

E

 	
 	Echo (class in actions)

 	
 	Extension (class in filters)

F

 	
 	Filename (class in filters)

 	
 	filters (module)

L

 	
 	LastModified (class in filters)

M

 	
 	Move (class in actions)

P

 	
 	Python (class in actions)

R

 	
 	Regex (class in filters)

 	
 	Rename (class in actions)

S

 	
 	Shell (class in actions)

T

 	
 	Trash (class in actions)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 organize

 		
 Quickstart

 		
 Installation

 		
 Creating your first config file

 		
 Simulate and run

 		
 Configuration

 		
 Editing the configuration

 		
 Environment variables

 		
 Rule syntax

 		
 Folder syntax

 		
 Globstrings

 		
 Excluding files and folders

 		
 Aliases

 		
 Filter syntax

 		
 Action syntax

 		
 Variable substitution (placeholders)

 		
 Filters

 		
 Extension

 		
 Filename

 		
 LastModified

 		
 Created

 		
 Regex

 		
 Actions

 		
 Move

 		
 Copy

 		
 Rename

 		
 Trash

 		
 Shell

 		
 Python

 		
 Echo

_static/ajax-loader.gif

